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Introduction to Mixed Linear Models

Throughout the lecture we have assumed that the factors in an experiment
were fixed factors and therefore the statistical inference made about these
factors are confined to the specific levels studied.

In some situations, the factor levels are chosen at random from a larger pop-
ulation of possible levels, and we wish to draw a conclusions about the entire
population of levels, not just those that were used in the experimental design.
In this situation, the factor is said to be a random factor.

In this lesson we focus on random effects and on mixed effects model. Nested
and split-plot designs, two situations where random factors are frequently en-
countered in practice, will be presented in following lectures.
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Introduction in to Mixed Linear Models

What is mixed models?

I Mixed models model the covariance structure of data and they are
generalization of linear models where observations are not
independent.

What are the most common mixed models?

I Random effects models: certain effects arise from a distribution and
add additional source of variation

I Random coefficients: used for repeated measures to model relationship
with time, estimates are correlated.
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Mixed Effects models

Mixed-effects models describe the relationship between a response variable
and one or more covariates recorded with it.

I Fixed-effects: the factors in the experiment have a predetermined set
of levels and the only inferences are for the levels of the factors actually
used in the experiment.

I Random effects: the levels of factors used in the experiment are
randomly selected from a population of possible levels. The inferences
from the data in the experiment are for all levels of the factors in the
population from which the levels were selected and not only the levels
used in the experiment.

I Mixed-effects: the levels of some of the factors used in the experiment
are randomly selected from a population of possible levels, whereas the
levels of the other factors in the experiment are predetermined.
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Introduction in to Mixed Linear Models

Why use mixed models?

I To avoid mistakes.
I To get more appropriate fixed effect estimates.
I To broaden inference over wider population.
I To deal with missing data.
I To be able to handle correlation structure in the data.
I To be able to handle heterscedasticity between treatment groups.
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Packages for Linear Mixed Effects models in R

There are several packages in R that deal with linear mixed models, most
widely used are:

I nlme - Non-Linear Mixed Effects, library(nlme)
Fit only Gaussian outcomes, it is possible to specify the
variance-covariance matrix for the random effects.

I lme4 - Linear Mixed Effects, library(lme4)
Can be used to fit generalized mixed-effects regression models, it is not
possible to specify the variance-covariance matrix for the random
effects, but can handle with diagonal covariance structures or
unstructured covariance matrices.

I Asreml-R - Average Spatial REML, library(asreml)
Not official cran-R package, developed from S-plus.

All of them has some advantages and some disadvantages. Notations, speci-
fications, special functions and classes are different.
For power analysis for random effects in mixed models is possible to use pack-
age called pamm.
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Simple example:

library(nlme)
library(lme4)
library(MASS)

data(oats)
names(oats) = c(’block’, ’variety’, ’nitrogen’, ’yield’)
oats$mainplot = oats$variety
oats$subplot = oats$nitrogen
attach(oats)

# SIMPLE MIXED EFFECTS MODEL
model1a=lme( yield~variety*nitrogen, random = ~ 1|block)
model2a=lmer(yield~variety*nitrogen + (1|block))

# NESTED MIXED EFFECTS MODEL
model1b=lme( yield~variety*nitrogen, random=~1|block/mainplot)
model2b=lmer(yield~variety*nitrogen + (1|block/mainplot))
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Simple example - comparison of classical and Mixed Models approach

Description of data set:
In a pharmaceutical company the use of NIR (Near Infrared Reflectance) spec-
troscopy was investigated as an alternative to the more cumbersome (and ex-
pensive) HPLC method to determine the content of active substance in tablets.
Source of data set:
Brockhoff and Thierry-Carstensen 2003, Test set validation using simple sta-
tistical methods.

hplc nir difference
Tablet_1 10.4 10.1 0.3
Tablet_2 10.6 10.8 -0.2
Tablet_3 10.2 10.2 0.0
Tablet_4 10.1 9.9 0.2
Tablet_5 10.3 11.0 -0.7
Tablet_6 10.7 10.5 0.2
Tablet_7 10.3 10.2 0.1
Tablet_8 10.9 10.9 0.0
Tablet_9 10.1 10.4 -0.3
Tablet_10 9.8 9.9 -0.1

The aim is to study the method differences.
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Simple example - comparison of classical and Mixed Models approach
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Simple example - comparison of classical and Mixed Models approach

Simple analysis of the pharmaceutical data by the paired t-test

> mean(d) -0.05
> var(d) 0.08722222
> sd(d) 0.2953341
t.test(d)
# alternatively: t.test(hplc, nir, paired = TRUE)
Paired t-test
data: hplc and nir
t = -0.5354, df = 9, p-value = 0.6054
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval: -0.2612693 0.1612693
sample estimates: mean of the differences -0.05

The standard error of the mean d̄ (ie. the uncertainty of the estimated difference) :
SEd̄ =

sd√
n

= 0.295√
10

= 0.0934

t-statistics: t = d̄
SEd̄

= −0.05
0.0934 = −0.5354

Final regression model: di = µ+ εi εi ∼ N(o, σ2)

Estimated model parameters: µ̂ = d̄ , σ̂ = sd
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Simple example - comparison of classical and Mixed Models approach
Simple analysis of the pharmaceutical data by the ANOVA
We have randomized balanced design with two treatments - methods and 10
blocks - tablets.
Used regression model: yij = µ+ αi + βj + εij εij ∼ N(0, σ2)

summary(aov(y ~ method+tablet))
Df Sum Sq Mean Sq F value Pr(>F)

method 1 0.0125 0.01250 0.287 0.6054
tablet 9 2.0005 0.22228 5.097 0.0118
Residuals 9 0.3925 0.04361

The uncertainty of the average method difference:

SEȳ2−ȳ1 =

√
MSE

(
1
n1

+
1
n2

)
=

√
0.0436(

1
10

+
1
10

) = 0.0934

We have the same p-value as in the t-test approach and the uncertainty since the t
statistic for testing H0 : µ1 = µ2 is

t =
ȳ2 − ȳ1√

MSE

(
1
n1

+ 1
nj

) .
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Simple example - comparison of classical and Mixed Models approach

Misleading information from the classical ANOVA approach
The ANOVA approach compare treatments means and is based on knowledge
obtained only from certain measurements:

In pharmaceutical data example, the ANOVA approach is valid only for state-
ments about the 10 specific tablets in the experiment, not for tablets in general.
The uncertainty of the average NIR value is given by using only the 10 NIR
measurements: SEȳ1 = s1√

10
= 0.127, s1 = sd(NIR) = 0.4012.

On the other hand, the Mixed Models approach is valid for tablets (blocks) in
general, since we consider the 10 tablets as a random sample.
Let us consider Mixed Model with tablet as a random effects:

yij = µ+ ai + βj + εij εij ∼ N(0, σ2), ai ∼ N(0, σ2
T ).
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Simple example - comparison of classical and Mixed Models approach

Comparison of Fixed and Mixed model
The observations in Mixed Model are no longer independent and the tablet
differences become a part of the variance structure.

1. The expected value of the observation yij .

2. The variance of the observation yij .

3. The relation between two observations.

Comparison table of fixed and mixed model
Fixed Model Mixed Model

1 E
[
yij
]

µ+ αi + βj µ+ βj
2 var

[
yij
]

σ2 σ2
T + σ2

3 cov(yi1 j1 , yi2 j2 ) j1 6= j2 0 σ2
T (if i1 = i2), 0(if i1 6= i2)
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Simple example - comparison of classical and Mixed Models approach

Analysis of the pharmaceutical data by the Mixed Models
Used mixed model:

yij = µ+ ai + βj + εij εij ∼ N(0, σ2), ai ∼ N(0, σ2
T ).

# ways how to estimate mixed models
# function lme (need library nlme)
# function lmer (need library lme4)
> model<-lme( y~method, random = ~1|tablet, data=temp)
> model<-lme( y~method, random=list(tablet=~1), data=temp)
> model<-lmer(y~method+(1|tablet), data=temp)
> summary(model)
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Simple example - comparison of classical and Mixed Models approach
Analysis of the pharmaceutical data by the Mixed Models
Used mixed model: yij = µ+ ai + βj + εij εij ∼ N(0, σ2), ai ∼ N(0, σ2

T ).

> summary(model)
Linear mixed model fit by REML
Formula: y ~ method + (1 | tablet)

Random effects:
Groups Name Variance Std.Dev.
tablet (Intercept) 0.089333 0.29889
Residual 0.043611 0.20883
Number of obs: 20, groups: tablet, 10

Fixed effects:
Estimate Std. Error t value

(Intercept) 10.39000 0.11530 90.11
methodhplc -0.05000 0.09339 -0.54

Correlation of Fixed Effects:
(Intr)

methodhplc -0.405

anova(model) numDF denDF F-value p-value
(Intercept) 1 9 9666.573 <.0001
method 1 9 0.287 0.6054
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Simple example - comparison of classical and Mixed Models approach

Analysis of the pharmaceutical data by the Mixed Models
Used mixed model:

yij = µ+ ai + βj + εij εij ∼ N(0, σ2), ai ∼ N(0, σ2
T ),

with estimated Random effects components:

Groups Name Variance Std.Dev.
tablet (Intercept) 0.089333 0.29889
Residual 0.043611 0.20883

σ̂2 = 0.043611, σ̂2
T = 0.089333,

and Fixed effects components:

Estimate Std. Error t value
(Intercept) 10.39000 0.11530 90.11
methodhplc -0.05000 0.09339 -0.54

µ̂ = 10.39000, β̂1 = 0, β̂2 = −0.05000
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Example with missing values

We have the same pharmaceutical data set, but we add 5 non-paired
measuremnt from each method.

n tablet method y n tablet method y n tablet method y
1 1 hplc 10.4 14 7 nir 10.2 27 14 hplc NA
2 1 nir 10.1 15 8 hplc 10.9 28 14 nir 10.3
3 2 hplc 10.6 16 8 nir 10.9 29 15 hplc NA
4 2 nir 10.8 17 9 hplc 10.1 30 15 nir 9.7
5 3 hplc 10.2 18 9 nir 10.4 31 16 hplc 10.3
6 3 nir 10.2 19 10 hplc 9.8 32 16 nir NA
7 4 hplc 10.1 20 10 nir 9.9 33 17 hplc 9.6
8 4 nir 9.9 21 11 hplc NA 34 17 nir NA
9 5 hplc 10.3 22 11 nir 10.8 35 18 hplc 10.0
10 5 nir 11.0 23 12 hplc NA 36 18 nir NA
11 6 hplc 10.7 24 12 nir 9.8 37 19 hplc 10.2
12 6 nir 10.5 25 13 hplc NA 38 19 nir NA
13 7 hplc 10.3 26 13 nir 10.5 39 20 hplc 9.9

40 20 nir NA

The mixed model in a direct way may give information about the key issues in
a data set, that a straightforward fixed ANOVA does not.
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Example with missing values

Analysis by fixed effects ANOVA
The fixed effect analysis only uses the information in the first 10 tablets.

> model1<-lm(y~tablet+method)
> anova(model1)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

tablet 19 3.7230 0.195947 4.4931 0.01288 *
method 1 0.0125 0.012500 0.2866 0.60537
Residuals 9 0.3925 0.043611

Note that only the Tablets row of the table has changed compared to the pre-
vious analysis.
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Example with missing values
Analysis by mixed model

> model2<-lme(y~method,random=~1| tablet,data=temp2t)
> anova(model2)

numDF denDF F-value p-value
(Intercept) 1 19 15715.981 <.0001
method 1 9 0.687 0.4285
> summary(model2)
Linear mixed-effects model fit by REML
Random effects:
Formula: ~1 | tablet

(Intercept) Residual
StdDev: 0.3192429 0.2085067
Fixed effects: y ~ method

Value Std.Error DF t-value p-value
(Intercept) 10.283857 0.09259174 19 111.06668 0.0000
methodhplc -0.072111 0.08697180 9 -0.82913 0.4285
Correlation:

(Intr)
methodhplc -0.47
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Example with missing values

Compariosn of Fixed and Mixed model approach
We use the R function estimable.
FIXED:

Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI
LS HPLC 10.2125 0.06177356 165.321550 9 0.0000000 10.0727585 10.3522415
LS NIR 10.2625 0.06177356 166.130957 9 0.0000000 10.1227585 10.4022415
LS DIF -0.0500 0.09339284 -0.535373 9 0.6053664 -0.2612693 0.1612693

MIXED:

Estimate Std. Error t value DF Pr(>|t|) Lower.CI Upper.CI
LS HPLC 10.21174590 0.09259174 110.2878719 9 0.0000000 10.0022888 10.4212030
LS NIR 10.28385689 0.09259174 111.0666778 19 0.0000000 10.0900602 10.4776536
LS DIF -0.07211099 0.08697180 -0.8291307 9 0.4284719 -0.2688549 0.1246329

Note that apart from giving a slightly different value, the Mixed model estima-
tion is also more precise, than the one only based on tablets 1-10. This is the
kind of analysis that the mixed model for this situation leads to.
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Simple Introduction to Theory of Mixed Models

Recall simple linear regression model of fixed effects approach:

yij = µ+ αi + βj + εij εij ∼ N(0, σ2), i ∈ {1, 2} , j ∈ {1, 2, 3} ,


y11
y21
y12
y22
y13
y23


︸ ︷︷ ︸

y

=


1 1 0 1 0 0
1 0 1 1 0 0
1 1 0 0 1 0
1 0 1 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1


︸ ︷︷ ︸

X

·


µ
α1
α2
β1
β2
β3


︸ ︷︷ ︸

β

+


e11
e21
e12
e22
e13
e23


︸ ︷︷ ︸

e

.

equivalently,
Y = Xβ + e,

where y is an vector of all observations - response variables, X is an known matrix of
predictors (usually called design matrix), β is a vector of unknown coefficients - fixed
effects parameters and e is an vector of unknown independent measurement errors
e ∼ N(0, σ2I).
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Simple Introduction to Theory of Mixed Models

Regression model of Mixed linear model approach:

yij = µ+αi +bj + εij bj ∼ N(0, σ2
B), εij ∼ N(0, σ2) i ∈ {1, 2} , j ∈ {1, 2, 3} ,


y11
y21
y12
y22
y13
y23


︸ ︷︷ ︸

y

=


1 1 0
1 0 1
1 1 0
1 0 1
1 1 0
1 0 1


︸ ︷︷ ︸

X

·

 µ
α1
α2


︸ ︷︷ ︸

β

+


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


︸ ︷︷ ︸

Z

·

 b1
b2
b3


︸ ︷︷ ︸

u

+


e11
e21
e12
e22
e13
e23


︸ ︷︷ ︸

e

,

equivalently,
Y = Xβ + Zu + e,

where y is an vector of all observations - response variables, X is an known matrix of
predictors (usually called design matrix), β0 is a vector of unknown coefficients - fixed
effects parameters, Z is the design matrix for random effects, u is the vector of random
effects u ∼ N(0,G), cov(ui , uj ) = Gij and e is an vector of unknown independent
measurement errors e ∼ N(0,R), cov(ei , ej ) = Rij , typically R is diagonal.
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Simple Introduction to Theory of Mixed Models

Distribution of response variable y in Mixed Models:

Let us consider linear mixed model:

Y = Xβ + Zu + e, where u ∼ N(0,G), e ∼ N(0,R).

Distribution of y is multivariate normal

y ∼ N(µ,V)

with
µ = E [Xβ + Zu + e] = Xβ

and
V = var [Xβ + Zu + e] = var [Zu] + var [e] = ZGZT + R.

y ∼ N(Xβ,ZGZT + R)

Notice that if R is diagonal and we have random block effect model then V is
block diagonal matrix.
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Simple Introduction to Theory of Mixed Models

Example of a y distribution for simple linear Mixed Effects Models:

Let us consider linear mixed effect model:

yij = µ+αi +bj + εij bj ∼ N(0, σ2
B), εij ∼ N(0, σ2) i ∈ {1, 2} , j ∈ {1, 2, 3} ,

µ =


µ + α1
µ + α2
µ + α1
µ + α2
µ + α1
µ + α2

 V =



σ2 + σ2
B σ2

B 0 0 0 0
σ2

B σ2 + σ2
B 0 0 0 0

0 0 σ2 + σ2
B σ2

B 0 0
0 0 σ2

B σ2 + σ2
B 0 0

0 0 0 0 σ2 + σ2
B σ2

B
0 0 0 0 σ2

B σ2 + σ2
B


Notice that two observations from the same block are correlated !!
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Theory of Mixed Models
The likelihood function L for mixed effect models:

For given parameter values, the likelihood function L returns a measure of the
probability of observing response variables y.
The negative log likelihood function for a mixed model is given by:

l(y, β, γ) =
1
2

(
n ln(2π) + ln |V(γ)|+ (y− Xβ)TV(γ)−1(y− Xβ)

)
In the simple one way ANOVA with random block effect model is

γ = (σ2, σ2
b)

T and β = (α1, α2)
T

The maximum likelihood estimation is given by

(β̂(ML), γ̂(ML)) = argmin(β,γ)l(y, β, γ)

Assume γ is known then ML estimation of β̂(γ) is given by weighted least
squares estimation

β̂ML(γ) = argmin(β)(y− Xβ)TV(γ)−1(y− Xβ),

by differentiate and equal to zero we obtain:

β̂ML(γ) = (XTV(γ)−1X)−1XTV(γ)−1y
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Theory of Mixed Models

The restricted likelihood method for mixed effect models:

Since the maximum likelihood estimation is biased, we want to modify it to
obtain unbiased estimator.
Idea of Restricted (residual) maximum likelihood (REML) is in linear transform
of data which eliminates mean.

REML method is given by modification of classical ML function by

lREML(y, β, γ) =
1
2

(
n ln(2π) + ln |V(γ)|+ (y− Xβ)TV−1(γ)(y− Xβ) + ln

∣∣∣XTV−1(γ)X
∣∣∣) .

This REML method gives (at least in balanced case) the unbiased estimates and is
generally preferred in mixed models.
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Theory of Mixed Models

Restricted maximum likelihood (REML)

I The default parameter estimation criterion for linear mixed models in
lme and lmer functions is REML.

I Maximum likelihood (ML) estimates (sometimes called full maximum
likelihood) can be requested by specifying REML=FALSE.

I Generally REML estimates of variance components are preferred. ML
estimates are known to be biased. Although REML estimates are not
guaranteed to be unbiased, they are usually less biased than ML
estimates.
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Example of Mixed effect model analysis
Drying of beech wood planks
To investigate the effect of drying of beech wood on the humidity percentage,
the following experiment was conducted. Each of 20 planks was dried in a cer-
tain period of time. Then the humidity percentage was measured in 5 depths
(1,3,5,7,9) and 3 widths (1,2,3) for each plank.
Variables:

I plank - Numbered 1-20
I width - Numbered 1,2,3
I depth - Numbered 1,3,5,7,9
I humidity - Humidity percentage

Source: The Royal Veterinary and Agricultural University, Denmark.
Number of observations: 300 (20 planks)

depth 1: close to the top
depth 5: in the center
depth 9: close to the bottom
depth 3: between 1 and 5
depth 7: between 5 and 9
width 1: close to the side
width 3: in the center
width 2: between 1 and 3
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Exercise

Analyze data from the Drying of beech wood planks experiment.

I Plot four average humidity profiles:
2 interaction plots for width and 2 for depth.

I Carrying out the fixed effects model analysis.
I Carry out the mixed model analysis.
I Run the post hoc analysis
I Compare the fixed parameters and use the p-value correction

(TukeyHSD).
Hint: Use function lsmeans from the package lsmeans with
adjust="tukey".

I Summarize results.
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